Characterization of graphs with some normalized Laplacian eigenvalue of multiplicity n − 3
نویسندگان
چکیده
منابع مشابه
The (normalized) Laplacian Eigenvalue of Signed Graphs
Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...
متن کاملNormalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملSpectral Characterization of Graphs with Small Second Largest Laplacian Eigenvalue
The family G of connected graphs with second largest Laplacian eigenvalue at most θ, where θ = 3.2470 is the largest root of the equation μ−5μ+6μ−1 = 0, is characterized by Wu, Yu and Shu [Y.R. Wu, G.L. Yu and J.L. Shu, Graphs with small second largest Laplacian eigenvalue, European J. Combin. 36 (2014) 190–197]. Let G(a, b, c, d) be a graph with order n = 2a + b + 2c + 3d + 1 that consists of ...
متن کاملsynthesis and characterization of some macrocyclic schiff bases
ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...
15 صفحه اولEla on the Least Signless Laplacian Eigenvalue of Some Graphs
For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2020
ISSN: 0024-3795
DOI: 10.1016/j.laa.2020.07.027